ABOUT THIS AWARD

Endowed in memory of George Michael, one of the founding fathers of the SC Conference series, the ACM IEEE-CS George Michael Memorial Fellowships honor exceptional PhD students throughout the world whose research focus areas are in high performance computing, networking, storage, and large-scale data analysis. ACM, the IEEE Computer Society, and the SC Conference support this award.

Fellowship winners are selected each year based on overall potential for research excellence, the degree to which technical interests align with those of the HPC community, academic progress to date, recommendations by their advisor and others, and a demonstration of current and anticipated use of HPC resources. The Fellowship includes a $5,000 honorarium, plus travel and registration to receive the award at the annual SC conference.

Harshitha Menon, Alexander Breuer Awarded George Michael Memorial HPC Fellowships for 2014

Harshitha Menon  was recognized for her project "Scalable Load Balancing and Adaptive Run Time Techniques" and Alexander Breuer</a> for his project "Petascale High Order Earthquake Simulations."

Harshitha Menon is a PhD candidate at University of Illinois Urbana-Champaign, advised by Prof. Laxmikant V. Kale. She researches on developing scalable load balancing algorithms and adaptive run time techniques to improve the performance of large scale dynamic applications. In addition, Harshitha works on optimizing performance of N-body codes, such as the cosmology simulation application ChaNGa, which is a collaborative research project between UIUC and University of Washington.

Alexander Breuer received his diploma in mathematics in 2011 at Technische Universität München (TUM) and is a fourth year doctoral candidate - advised by Prof. Dr. Michael Bader - at the Chair of Scientific Computing at TUM. In 2012 Alexander and his colleagues established a close collaboration between leading experts in computational science and seismology. Declared goal of this international collaboration is one of the grand challenges in seismic modeling: "Multi-physics ground motion simulation for earthquake-engineering, including the complete dynamic rupture process and 3D seismic wave propagation with frequencies resolved beyond 5 Hz".

Alexander’s research covers optimizations in the entire simulation pipeline, which includes node-level performance leveraging SIMD-paradigms, hybrid and heterogeneous parallelization up to machine-size and co-design of numerics and large-scale optimizations. In 2014 Alexander and his collaborators have been awarded with the PRACE ISC Award and received an ACM Gordon Bell nomination for their outstanding end-to-end performance reengineering of the SeisSol software package.